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Abstract

Introduction: Machine learning algorithms are expected to work side-by-side with humans 

in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of 

paramount importance. Deep neural networks (DNNs) represent the state-of-the-art models to 
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address real-world classification. Although the strength of activation in DNNs is often correlated 

with the network’s confidence, in-depth analyses are needed to establish whether they are well 

calibrated.

Method: In this paper, we demonstrate the use of DNN-based classification tools to benefit 

cancer registries by automating information extraction of disease at diagnosis and at surgery 

from electronic text pathology reports from the US National Cancer Institute (NCI) Surveillance, 

Epidemiology, and End Results (SEER) population-based cancer registries. In particular, we 

introduce multiple methods for selective classification to achieve a target level of accuracy 

on multiple classification tasks while minimizing the rejection amount—that is, the number of 

electronic pathology reports for which the model’s predictions are unreliable. We evaluate the 

proposed methods by comparing our approach with the current in-house deep learning-based 

abstaining classifier.

Results: Overall, all the proposed selective classification methods effectively allow for achieving 

the targeted level of accuracy or higher in a trade-off analysis aimed to minimize the rejection rate. 

On in-distribution validation and holdout test data, with all the proposed methods, we achieve on 

all tasks the required target level of accuracy with a lower rejection rate than the deep abstaining 

classifier (DAC). Interpreting the results for the out-of-distribution test data is more complex; 

nevertheless, in this case as well, the rejection rate from the best among the proposed methods 

achieving 97% accuracy or higher is lower than the rejection rate based on the DAC.

Conclusions: We show that although both approaches can flag those samples that should be 

manually reviewed and labeled by human annotators, the newly proposed methods retain a larger 

fraction and do so without retraining—thus offering a reduced computational cost compared with 

the in-house deep learning-based abstaining classifier.

Keywords

Selective classification; Deep learning; Abstaining classifier; Text classification; Uncertainty 
quantification; Accuracy; DNN; CNN; HiSAN; Pathology reports; NCI SEER

1. Introduction

Cancer is a major threat to human lives: large morbidity rates of about 1.9 million new 

cancer diagnoses and over 600,000 cancer deaths are recorded in the United States per year. 

Therefore, surveillance of cancer incidence is essential for monitoring public health. The 

task, however, requires manual coding and review of clinical documents, and the associated 

time and monetary costs make it impossible to perform such tasks in real time on a large 

scale. Electronic pathology reports are an essential data source used by National Cancer 

Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) program–sponsored 

population-based registries to document the diagnosis of cancer. Cancer registrars in the 

United States are responsible for collecting cancer incidence data—including extracting 

and classifying information about diagnosis, treatment modalities, and survival data from 

unstructured notes and reports in a hybrid, AI-assisted manner. The vital records registries 

with the state health departments are responsible for death data, including cancer deaths.
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The natural language processing (NLP) field for cancer applications is still dominated by 

rule-based systems. Deep neural networks (DNNs) have been very successful at addressing 

many real-world classification problems [1,2]. As a result, DNN-based classification tools 

are being deployed in situations where their decisions impact everyday life. The multi-task 

(MT) convolutional neural network (CNN) and more advanced models have shown great 

performance in information extraction of disease classification from electronic cancer 

pathology reports [3–5]. In this context, the ability of AI classifiers to make reliable 

decisions is critically important. As new architectures and components are introduced, 

research has focused on improving the accuracy and speed of networks. Yet far less attention 

has been given to determining when predictions can be trusted and when they cannot. In 

other words, neural networks are effective at providing output that is correct most of the 

time but, importantly, are less effective at identifying the extent to which the output can 

be trusted, including when they amount to little more than educated guesses [6]. When 

the accuracy of the model is imperfect, a human reviewer is required to verify that the AI 

classifications are correct, reducing the cost savings meant to be realized through use of 

AI-based tools [7]. Even if such a model is used only to assist manual classification, we face 

the problem that inaccurate second opinions may distract – or worse, bias – human registrars 

and degrade their performance. Therefore, accurate uncertainty quantification (UQ) is vital 

to developing trust in an AI-based model. In particular, with calibrated UQ, we can trust a 

machine learning (ML) model’s high-confidence decisions while minimizing human labor.

The rest of the paper is organized as follows. In Section 2, the context of our work within 

recent literature is provided. In Section 3, we discuss the dataset for this study – namely, 

the NCI SEER cancer pathology reports – and the two different model architectures we test 

with our rejection methods. Section 4 details the findings of our experiments on the different 

model architectures and rejection methods compared with the baseline model; experimental 

findings on out-ofdistribution (OOD) data are also provided. In Section 5, we discuss the 

methodological contributions and potential generalizability for informatics problems. Lastly, 

we present conclusions and provide directions for future work in Section 6.

2. Background

2.1. Related UQ work

A well-calibrated DNN model should demonstrate good confidence in its predictions, such 

that it is accurate and indicates high uncertainty when producing inaccurate predictions, 

thereby making it reliable and easy to interpret. In spite of recent advances in probabilistic 

deep learning (DL) to improve model robustness, obtaining accurate quantification of 

uncertainty estimates from DNNs is still an open research problem [8]. Selective prediction 

[9] is closely related to confidence estimation, as well as OOD detection [10,11] and 

uncertainty calibration of DNNs [6,12]—that is, the accurate representation of predictive 

probabilities with respect to true likelihood, which is a challenging problem because of the 

unavailability of ground truth uncertainty estimates [8]. A distinction among these topics 

is that calibration focuses on adjusting the overall confidence level of a model, globally 

increasing or decreasing the model’s confidence on all samples, whereas selective prediction 
is based on relative confidence among the samples: the rejection rate in selective prediction 
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results from model uncertainty rather than modelagnostic data uncertainty [13]. Existing 

research to improve predictive uncertainty in DNNs for multiclass classification tasks can 

be broadly classified into three categories, which aim to (1) improve the model input by 

training the model with data augmentation; (2) improve the model parameters with Bayesian 

and non-Bayesian probabilistic methods; and (3) improve the model accuracy with trainable 

calibration measures or with post-processing confidence calibration.

Training the model with data augmentation—Methods aimed at improving the model 

input by training the model with data augmentation produce extra samples during training 

by augmenting the samples’ labels. Although data augmentation methods, most notably 

Mixup [14] and AugMix [15], produce better-calibrated output, improve model robustness, 

and can be effective OOD detectors, it is difficult in practice to introduce a wide spectrum 

of perturbations and corruptions during training that comprehensively represent real-world 

deployment conditions, especially when the samples’ label distribution is highly skewed and 

data are high-dimensional.

Bayesian and non-Bayesian probabilistic methods—Probabilistic methods aimed 

at improving the model parameters can be categorized as Bayesian and non-Bayesian.

Non-Bayesian probabilistic methods such as ensemble-based methods estimate confidence 

based on the statistics of the ensemble model’s output. Most notably among this class 

of models, deep ensembles [16] propose training an ensemble of neural networks from 

different random initializations; while training, adversarial samples are generated to 

improve model robustness and provide calibrated confidence [17]. However, ensembles 

are computationally practical for small models only, as they introduce additional overhead 

associated with training multiple models and significant memory complexity during testing.

In contrast, probabilistic Bayesian methods assume a prior distribution over the deterministic 

parameters of the DNN and obtain confidence estimates through the posterior. Predictive 

uncertainty is estimated as probability distributions over the output label probabilities 

instead of a single scalar probability. Approximate Bayesian inference methods for DNNs 

have been proposed, as computing the true posterior is intractable—most notably in this 

class of methods are variational inference approaches [18], stochastic gradient variants of 

Markov Chain Monte Carlo [19], Monte Carlo dropout [20] and stochastic weight-averaging 

Gaussian (SWAG) [21]. Approximate Bayesian inference methods are promising as they 

are equivalent to using an ensemble for confidence estimation, but they require no actual 

training and storing of multiple models. Nevertheless, they may fail to provide calibrated 

uncertainty between separated regions of observations, as they tend to fit an approximation 

to a local mode and do not capture the complete true posterior [22], potentially causing the 

model to be overconfident under distributional shift.

Trainable confidence calibration—Trainable calibration methods are proposed to 

integrate model calibration into classification training. One of the earliest trainable 

approaches is entropy regularization [23]. The method proposes to use entropy as a 

regularization term in loss functions for model calibration. One disadvantage of entropy 

regularization is that the final classification loss depends on a very sensitive weight scalar. 
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[24] propose to express calibration error as a tractable integral probability measure, that is, 

the maximum mean calibration error (MMCE) computed in a reproducing kernel Hilbert 

space. MMCE is an accurate method to minimize calibration error metrics while maximally 

preserving the number of high-confidence predictions. [25] propose to add the difference 

between confidence and accuracy (DCA) as an auxiliary loss term to the cross-entropy loss 

for classification tasks. DCA estimates the expected calibration error by minimizing the 

difference between the predicted confidence and the neural networks’ accuracy. A similar, 

albeit different class of trainable calibration methods introduces abstention specific cost 

into the loss function or learns to abstain so that the performance of the model reaches a 

specific target [26]. Earlier work by [27] focuses on learning with abstention for binary 

classification. Next, [28] developed a Structured Output Learning with Abstention (SOLA) 

framework to allow abstaining from predicting, thus increasing the reliability of model 

predictions. [29] proposed a deep abstaining classifier (DAC) that uses a DNN trained 

with an extra abstention class for detecting OOD and novel samples. The DAC allows for 

auto-tuning of a hyperparameter expressing the degree of penalty for abstention (see Section 

2.1 of [29]) while also providing a separate abstention class that aids interpretability, as the 

features supporting abstention can be interrogated. Although all these trainable calibration 

strategies are effective, they require retraining for each desired confidence level.

Post-processing confidence calibration—Post-processing calibration includes 

temperature scaling [12] and similar approaches such as Dirichlet calibration [30]. 

Temperature scaling is a widely used calibration method, which treats model calibration 

as a post-processing task by scaling the output by a temperature parameter. Although the 

optimization process of the temperature parameter is inexpensive, this method globally 

increases or decreases the model’s confidence on all samples, resulting in unchanged 

ranking of all samples’ confidence; thus, the calibration on the independent and identically 

distributed validation dataset does not guarantee calibration under distributional shift.

In the same class of methods, a–posteriori confidence estimation, also known as selective 
classification, is done by pairing a standard classifier with a confidence estimator. The 

simplest approach considers the highest score from the probability distribution of the final 

output layer of DNN models as a proxy for predictive confidence. [31] provides empirical 

evidence that for DNN classifiers, in-distribution predictions do tend to have higher winning 

scores than OOD samples, thus empirically justifying the use of softmax thresholding as a 

useful baseline. Nevertheless, though the strength of activations in DNNs is often correlated 

with the network’s confidence, in-depth analyses are needed to establish whether the 

network’s outputs are well calibrated and can thus be employed to measure the uncertainty 

of their prediction. Even so, this post-processing optimization process is inexpensive in 

terms of time and cost of training, and it is also flexible in defining the uncertainty, or 

accepting or rejecting the model predictions at a certain threshold level. Moreover, effective 

confidence estimators can also be employed in active learning strategies in the context of 

uncertainty sampling [32]. Finally, this approach easily allows coupling uncertainty and 

explainability to align prediction probability with the actual accuracy in test data.
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2.2. Contribution of this work

In the context of our study, a specific accuracy level – higher, in practice, than what can 

be achieved by the trained model for predictions on all data – must be met by the model 

employed to perform information extraction from electronic text pathology reports from the 

population-based cancer registries participating in the US NCI SEER program. Therefore, 

it is crucial to identify the reports in which the model is less confident (i.e., the rejection 

rate) so that its accuracy on the remaining retained set reaches the accuracy specified. This 

ideally requires confidence to be calibrated to the accuracy and the confidence score to be 

maximally discriminative—separating the correct predictions from the incorrect ones. With 

infinite training data, we expect the neural net to extract all relevant features from the input 

and for the prediction scores to converge to the Bayes risk, thus satisfying this optimality 

criterion. However, it is an empirical question whether better scores can be designed in 

particular applications. Therefore, we pair our classifier with four confidence estimators for 

UQ to meet the accuracy requirements for our models. We test the proposed methods (1) by 

evaluating the discriminating power as measured by the rejection rate while maintaining a 

minimum targeted accuracy on the retained predictions within our four target classification 

tasks, as well as (2) by comparing the rejection rate with the current in-house DL-based 

abstaining classifier that is designed to use a trainable DL calibration technology to extract 

features specifically associated with confidence [29]. We show that though both methods 

can flag the samples that require manual review, the newly proposed methods retain a 

larger fraction and can do so without retraining. Thus, the method proposed herein results 

in a reduced computational cost compared with that of the in-house DL-based abstaining 

classifier.

3. Materials and methods

3.1. Cancer pathology report data

The data for our information extraction task comprise electronic cancer pathology reports 

collected by the NCI SEER program from seven different cancer registries: California (CA), 

New Mexico (NM), Kentucky (KY), Louisiana (LA), New Jersey (NJ), Seattle (SA), and 

Utah (UT). Each new primary tumor diagnosis is assigned a unique tumor ID and pathology 

reports consisting of highly technical, partially structured text characterizing the tumor at the 

time of the diagnosis (i.e., biopsy pathology reports) or at the time of surgery (i.e., surgical 

pathology reports). Notably, the structure of the text varies somewhat among pathology 

laboratories and from registry to registry: standard structured analysis systems often do 

not generalize very well. The ground truth labels for these reports are manually annotated 

by certified tumor registrars at the tumor level in the Cancer/Tumor/Case (CTC) database, 

which stores all diagnostic, staging, and treatment information for reportable cancers in 

the SEER Data Management System (SEER*DMS). In particular, the pathologists write 

the free-form text and may have options for drop-down entry. The reports are then sent to 

registrars at a SEER registry, who use standardized reporting guidelines instituted by the 

SEER program1 to code the written reports. The standardized International Classification 

of Diseases for Oncology (ICD-O-3) terminology is used for the four tasks of interest in 

1https://seer.cancer.gov/tools/codingmanuals/.
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this study: primary cancer site (Site, 70 CTC classes), primary anatomic subsite (Subsite, 

324 CTC classes), laterality (Laterality, 7 CTC classes), and histological type (Histology, 

620 CTC classes).2 An example of CTC codes for primary anatomic subsite is shown in 

Supplementary Figure 1. Even though most pathology reports are associated with only a 

single tumor, the converse is not true (i.e., a single tumor may have more than one pathology 

report); therefore, the ground truth being available only at the tumor level means that any 

particular report may not have the information to decide on the correct classification, leading 

to an irreducible Bayes’ error in the predictions of the trained model.

3.2. Deep learning models for text classification

This paper compares DNNs with differing combinations of architectures and activation 

functions. See Fig. 1 for a visual representation of the different DNN architectures that 

we consider. The first model considered is a TextCNN [1,33], which is one of the 

most successful and widely used CNN models for text classification. It consists of three 

parts: word embedding, 1D convolution, and a fully connected decision layer. Word 
embedding is a learned representation of terms that maps a set of words onto vectors of 

numerical representations with the same semantic meaning and similar observation. The 

1D convolution layer has a series of 1D convolution filters that have latent representations 

to articulate the features in the word vectors of documents. The identified features are 

passed to the fully connected layer to make inferences. MTCNN [4] is an extension of 

TextCNN that applies the multi-task learning (MTL) mechanism [34] to the decision layer. 

A classifier learns multiple tasks simultaneously and finds an optimal latent representation 

to solve a series of related tasks. The MTL helps find more generalized solutions than 

single-task models, thus yielding higher task performance. The second architecture is 

a hierarchical self-attention network (MTHiSAN), which is the current state-of-the-art 

model for classifying electronic cancer pathology reports [3,35,36]. This DL architecture 

is composed of two hierarchies, each containing several self-attention layers. The word-level 

hierarchy takes in word embeddings and generates a line embedding representation for 

each line in the pathology report. Next, the line-level hierarchy utilizes line embeddings to 

generate a document embedding representation that can then be used for classification. A 

multi-task decision layer is then used to simultaneously classify on all relevant tasks for 

each input document. For this study, both the MTCNN and the MTHiSAN architectures 

are developed in a multilabel classification (MLC) setting aimed to simultaneously output a 

prediction across all existing classes.

The pathology report, the written description of a histological examination, is the most 

accurate method for diagnosing cancer. Examples of pathology reports can be found on 

the NCI SEER website.3 SEER cancer registries collect demographic, tumor (including 

pathology reports), treatment, and outcome data for all cancer cases diagnosed within their 

catchment area. Tumor registrars abstract information from pathology and other medical 

reports to organize, summarize, and categorize information about each tumor. The manually 

coded categorical information is used for our training labels. The pathology report text 

2The class counts reported here were obtained with consideration of the universe of CTC labels across all SEER registries; a lower 
count class is reported in our experiments, as we are considering samples from only a few registries out of all SEER registries.
3https://training.seer.cancer.gov/abstracting/procedures/pathological/histologic/operative/example/.
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is free-form and generally messy. Therefore, we implemented the following cleaning 

procedures before training the model. Before being used in the neural networks, each 

electronic pathology report was subjected to a preprocessing step to minimize formatting 

inconsistencies across the dataset. This step consists of converting all text to lowercase, 

stripping all documents of any hex escapes and unicode characters, and replacing numerical 

values greater than 100 with either ‘large_int_token’ or ‘large_float_token’ depending on 

the format of the value being replaced. The resulting sequence of words in the processed 

documents is then tokenized to a sequence of integer indices, so that each word in the 

vocabulary is mapped to a unique integer value. So that reports can be used as input to each 

network, we reverse the word order of each and truncate to a uniform length of 3000 tokens. 

Mathematically, for documents shorter than 3000 words (99% of the documents are less 

than 3000 tokens), reversing word order has no effect on model performance: both MTCNN 

and MTHiSAN are immune to reversing word order if both train/val/test documents are 

reversed the same way. For documents longer than 3000 words, the last 3000 tokens are 

used because the final diagnosis is detailed at the end of the report and tends to have the 

most useful information. Next, the documents are padded with 0s, which map to the <pad> 
token, which MTCNN and MTHiSAN are designed to ignore. Lastly, the integer tokens are 

passed either through the convolutional and maxpool layers in the MTCNN or through the 

hierarchical word and line embedding layers in MTHiSAN to extract the features passed 

to either the softmax or sigmoid activation function. When a softmax activation function is 

used, the probabilities by class will always sum to one because they are modeled as a joint 

distribution. However, when a sigmoid activation function is used, the outcomes are modeled 

independently, and, therefore, the resulting probabilities are not constrained to sum to one. 

The assumption of independence of the outcome may play a key role in the decision to 

abstain.

The models are trained on aggregated data from five registries (LA + KY + UT + NJ + SA) 

and evaluated on the most recent (all reports after 2017) holdout data from these same five 

registries as well as samples from two OOD registries (CA and NM). The support of these 

sets is detailed in Table 1.4 This study design is relevant in the context of our application, 

as new data from current registries are available every year, and collaboration with new 

registries is ongoing. The study was executed according to the Institutional Review Board 

(IRB) protocol DOE000619, approved by Central DOE Institutional Review Board on April 

6, 2021 (initial approval on September 23, 2016).

3.3. Proposed UQ methods

We use a DAC [29] as the multitask abstaining classifier for classifying electronic text 

pathology reports. The DAC is a regular DNN but with an additional unlabeled abstention 

class and a modified version of the standard cross-entropy loss function required to allow 

abstention during the training. The DAC is trained such that if the model is not highly 

confident on a particular sample, it will predict the abstention class, indicating that the 

model should abstain on that sample. In addition, since the abstention is determined during 

4Although we document the count of reports from each single registry, we do not explicitly account for this split in the model; 
therefore, we refer to the data as the LAKYUTNJSA set.
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training, confusing examples tend to be down-weighted during training, leading to a better 

model. Further details regarding the loss function and the development of the DAC can be 

found in [37].

Nevertheless, the relative performance of a DAC to other UQ strategies is an empirical 

question that can depend on the problem instance. Therefore, this work investigates multiple 

selective classification strategies as a comparison to the DAC performance. Examination 

of more flexible strategies that require no model retraining upon changing the desired 

accuracy may reduce the computational costs of training the model and increase flexibility 

for downstream users. The training of DL models is typically the most computationally 

expensive part of the process, making retraining impractical for other practitioners with 

limited resources. Moreover, if new modeling strategies are flexible enough to adapt to OOD 

data, barriers of use in new datasets will be reduced.

Let us consider the output from our DL model, yielding the predicted probabilities 

p(yij) = p(y11), …, p(ynk) for the ith pathology report (with i = 1, …, n) of belonging to any 

one of the k classification labels (with j = 1, …, k) for each classification task considered 

in the study. The strategies proposed below are all calculated at the pathology report level; 

therefore, to simplify the notation, we will drop the i index.

Fixed confidence score.—This is probably the most simplistic way to apply a 

thresholding criteria. No transformation is applied to the predicted probabilities p(y1), …, p(yk)
and among these we select the highest one. We abstain on all reports with a highest 

predicted probability less than or equal to a threshold value in the interval [0, 1]. For 

perfect training, this probability should guarantee the accuracy on the retained set of reports; 

however, in practice, one may need to calibrate it using a validation set.

Delta difference confidence score.—This method is motivated by the expectation 

that when the model is confident in predicting, differences between the highest predicted 

probability and all the remaining probabilities should be large. In practice, such differences 

are well captured by the two highest predicted probabilities. Therefore, we compute a 

confidence score as the difference between the two top predicted probabilities. We do not 

retain samples with a confidence score less than or equal to a threshold value in the interval 

[0, 1], with the threshold being tuned to reach the target accuracy on the retained set.

Entropy ratio confidence score.—This method considers variations among all the 

predicted probabilities. First, we calculate the Shannon entropy − Σj = 1
k p(yj)log2(p(yj)); this 

measure can be used as an adjustment factor because it informs on the confidence of the 

model’s predictions (i.e., an entropy score close to 0 indicates that the model is confident in 

its prediction). Therefore, we compute the confidence score as the ratio between the highest 

predicted probability and the Shannon entropy. We abstain on samples with confidence 

scores less than or equal to a threshold value in the interval 0, max[p(y1), …, p(yk)]
−∑j = 1

k p(yj)log2(p(yj))
, which 

again must be tuned.
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Bayes beta confidence score.—This strategy is quite different from the methods 

presented above, as it relies on parametric assumptions necessary to describe the distribution 

of the correctly and incorrectly classified labels. Specifically, the confidence score is 

estimated as the conditional probability of a correct classification, which is based on 

the Bayes theorem for a binary variable, where being correct and incorrect are mutually 

exclusive outcomes:

p(correct |yj) = p(yj | correct) · p(correct)
p(yj | correct) · p(correct) + p(yj | incorrect) · p(incorrect) .

The marginal probabilities p(correct) and p(incorrect) are called priors and are estimated as 

the corresponding relative frequencies: the total number of correct or incorrect decisions 

divided by the total number of cases. The conditional probabilities p(yj | correct) and 

p(yj | incorrect) are estimated from the data assuming p(yj | correct) Beta(αcorrect, γcorrect) and 

p(yj | incorrect) Beta(αincorrect, γincorrect), where the parameters α and γ are obtained via maximum 

likelihood estimation (MLE). We will abstain on samples with confidence scores less than 

or equal to a threshold value in the interval [0, 1]. Again, though this method is expected to 

provide guarantees on the accuracy depending on the threshold value, in real examples, one 

may need to calibrate the score using validation data.

The accuracy and the rejection rate are correlated, and we want to minimize rejections while 

achieving the desired accuracy. Therefore, we measure the performance of our models by 

comparing the rejection rate while maintaining the required accuracy level on the retained 

predictions within our four classification tasks. The overall accuracy is the chosen evaluation 

metric, as we are mainly interested in the count of correctly predicted labels (i.e., true 

positive). Moreover, we compute the accuracy along with a 95% confidence interval from an 

exact test based on the binomial distribution (see Clopper–Pearson intervals [38]).

In this particular study, we know the ground truth for each pathology report in the training, 

validation, and test sets. Generally, however, tuning the threshold values for our proposed a 
posteriori rejection methods on a target dataset (e.g., a new cancer registry or new incoming 

reports for existing cancer registries) may be infeasible in real-world settings due to a lack of 

ground truth labels. Instead, these values may need to be tuned on existing labeled training 

data and then applied to the target dataset. Therefore, for our study, we utilize the validation 

set to tune the threshold values for the a posteriori rejection methods and then use these 

tuned values to quantify the rejection rate on the test set where we expect to achieve the 

target accuracy (or higher) with the lowest possible rejection rate.

4. Results

For this study, we set a target accuracy level of 97%, a value high enough to consider the 

prediction scores trustworthy – comparable to the level at which registrars can manually 

annotate (~97%) – while mitigating human annotators’ workload for state cancer registries. 

We present the results for a combination of architectures (MTCNN and MTHiSAN) and 

activation functions (i.e., softmax and sigmoid).
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The baseline performance of our models for the four tasks considered is presented in Fig. 2. 

For all tasks – primary cancer site, primary anatomic subsite, laterality, and histological type 

– and for all combinations of architectures and activation functions, the baseline accuracy 

without rejection is lower than the target 97% on the validation data and on the test data for 

in-distribution, more recent holdout data (UTNJKYLASA) and for OOD data (CA and NM). 

For this reason, we leverage the selective classifications methods to increase the accuracy to 

the targeted level or higher in a trade-off analysis aimed to minimize the rejection rate.

4.1. Experimental study 1

This first study tested whether the proposed thresholding methods enable an accuracy level 

in the test set equal to or higher than the accuracy level in the validation set; it also exploits 

the performance of the different methods within the proposed architecture and activation 

function strategies. A specific tuning approach is required for the accuracy level on the 

validation data, whereas the current implementation of the DAC is self-tuning. For this 

reason, the DAC is excluded from this comparison.

For each of the proposed methods, Fig. 3 shows the tuning to the 97% accuracy level 

performed on the validation data to identify the threshold values to be used on the test set. 

The rejection rate associated with the 97% accuracy level is displayed next to the accuracy 

level. The results for the test set are presented in Fig. 4. As expected, with all the proposed 

methods and for all combinations of architecture and activation functions, we achieve a 

higher level of accuracy than 97% for all tasks.

The best performing method by task is selected as the one achieving 97% accuracy or 

higher and the lowest rejection rate. In both Figs. 3 and 4, the best performing method 

by task is denoted with an asterisk (*), whereas the worst performing method is denoted 

with an (x). The MTHiSAN architecture typically retains higher accuracy than the MTCNN 

architecture. The sigmoid is the selected architecture for laterality only, whereas for all other 

tasks the softmax architecture is selected based on lower rejection rate. Among the proposed 

approaches, the delta difference generally leads to lower rejection rate.

It should be noted that though a retention rate on the test set of 31.1% for histological 

type, or 40.3% for primary anatomic subsite, might seem low, the pathology coding API 

is currently in production in 13 SEER registries processing more than 3 million reports 

annually, which translates to a huge time savings of person-hours compared with that 

required by manual coding.

4.2. Experimental study 2

This second study aims to compare the performance of the proposed methods with the 

current in-house DAC. Therefore, we tune all methods on the validation set for the same 

self-tuning accuracy selected by the DAC, as shown at the top of Fig. 5. Next, the same 

thresholds found on the validation set are applied to the test set, and the results are 

presented at bottom of Fig. 5. Recalling that from the results of our first experimental study, 

the MTHiSAN model with the softmax activation function typically demonstrates higher 

accuracy at a lower rejection rate, in this second experimental study we present results on 
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this selected architecture only. The full set of results, including the MTCNN model and with 

both activation functions, is reported in the Supplementary file.

Again, as expected, with all the proposed methods, we achieve an accuracy level higher than 

97% on the holdout test set. On both the validation and the test sets, the proposed methods 

guarantee the 97% accuracy target level, but the best of them also lead to lower rejection 

rates than those from the DAC method.

We further extend the comparative analysis to two registries not included in the training 

or the validation set, namely CA (Fig. 6, top) and NM (Fig. 6, bottom). This is a strong 

test of the generalization of the proposed methods, as the distribution of the labels in these 

OOD registries is not necessarily represented by the registries included in the training set. 

Nevertheless, in both OOD cases, the rejection rate from the best among the proposed 

methods is lower than the abstention based on the DAC.

Overall, although the differences in retention rates compared to the current in-house 

DAC may seem small, such differences translate to tens of thousands of reports being 

automatically classified on all sets (training/validation/test) because of the large number of 

reports included in the study. Also, because the registries receive several million reports 

annually, significant savings in person-hours can be achieved when the proposed methods 

are deployed.

Furthermore, in this second experimental study, we also investigate how the retained 

predictions vary among classes in terms of the count of predicted classes retained at 

the specified accuracy and corresponding rejection rate. Our results show that our model 

predicts on multiple classes: at the very high 97% accuracy level required, the retained 

predictions vary across multiple classes. Moreover, all the proposed a posteriori methods 

better preserve the class distribution compared to the DAC by retaining samples that vary 

among a higher number of predicted classes out of all ground truth CTC classes at a larger 

or equal rate of classes (number of retained predicted classes vs. ground truth CTC classes) 

compared to the DAC—both for in-distribution data (Fig. 5) and for OOD test data (Fig. 6). 

Additional details on the number of retained samples by categories of classes (rare classes, 

common classes, and most prevalent classes) are provided in Section 2 of the Supplementary 

file.

As a case example, we can consider the results for the test set for anatomic subsite 

presented in Fig. 5 (bottom): with the best performing out of the proposed methods (i.e., 

entropy), 132 out of 312 classes are represented when optimizing the rejection rate while 

maintaining an arbitrarily fixed prediction accuracy of 0.97 or higher. Precisely, 138,949 

({100–62.63}*371,820/100) samples can be correctly predicted at an accuracy level of 0.98 

(95% CI: [0.979;0.981]); these samples are retained among 132 classes of the original 312 

CTC classes. On the other hand, with the DAC, a lower number of samples – 134,152 

({100–63.92}*371,820/100) – can be correctly predicted at the same accuracy level of 0.98 

(95% CI: [0.979;0.981]) but representing only 108 classes out of 312 CTC classes.

A larger number of retained classes achieved by using the proposed methods instead of the 

DAC is encouraging, as the model learned to classify examples while treating the classes 
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with equal importance; nevertheless, classes do not have the same frequencies, so it is 

difficult to obtain the same accuracy in each class, and the DAC seems more oriented to 

increasing the number of correct predictions from the majority class than from the minority 

ones. Conversely, the a posteriori methods better preserve the class distribution retained at 

the specified accuracy and corresponding rejection rate.

5. Discussion

In this study we proposed methods for UQ of DL models for text classification from 

electronic pathology reports.

We measure the performance of our models by optimizing the rejection rate while 

maintaining an arbitrarily fixed prediction accuracy level. The overall accuracy is the chosen 

evaluation metric, as we are mainly interested in the count of correctly predicted labels, or 

true positives. Identifying the samples where the model is less confident (i.e., the rejection 

rate) allows us to achieve the required level of accuracy on the remaining retained set of 

samples and thus obtain a real-world–deployable model in a high-risk setting, in which 

incorrect decisions have the potential to adversely affect patient and population health. All of 

the methods presented are flexible and can be tuned to fit the user’s need.

We evaluated the proposed methods (1) by comparing the rejection rate while maintaining 

a minimum targeted accuracy on the retained predictions, as well as (2) by comparing the 

rejection rate with the current in-house DAC model for text classification.

The following conclusions represent recommendations to achieve the required target (or 

higher) level of accuracy and the lowest rejection rate: (1) the use of the MTHiSAN 

architecture leads to better performance than MTCNN; (2) the softmax activation function 

is preferred to the sigmoid activation function for the majority of tasks; and (3) the delta 

and entropy ratio methods are most effective, indicating that differences among the predicted 

probabilities of all class labels are important.

Overall, all the proposed methods effectively allow for achieving the targeted level accuracy 

or higher in a trade-off analysis aimed to minimize the rejection rate. On validation and 

holdout test data, with all the proposed methods, we achieve on all tasks the required target 

level of accuracy with a lower rejection rate than the DAC. Interpreting the results for the 

OOD test data is more complex; nevertheless, in this case as well, the rejection rate from 

the best among the proposed methods achieving 97% accuracy or higher is lower than the 

rejection rate based on the DAC.

Also, compared to the DAC and other trainable confidence calibration approaches, the 

proposed post-processing optimization methods are inexpensive in terms of training time 

and cost while remaining flexible in defining the uncertainty—that is, accepting or rejecting 

the model predictions at a certain threshold level.

Additionally, all the proposed a posteriori methods better preserve the class distribution 

compared to the DAC, as the class rate (no. of predicted classes vs. no. of ground truth CTC 
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classes) retained at the specified accuracy and corresponding rejection rate is higher when 

the reports are selected with any of the proposed a posteriori methods compared to the DAC.

This research product impacts real-world biomedical applications, directly benefiting the 

NCI by reducing the time to solution when training new models, as the UQ methods can 

be calculated a posteriori. The new methods also reduced the rejections across all prediction 

tasks, resulting in higher rates of auto-coding and expedited processing.

In addition, this work highlights DOE’s capability to provide robust solutions for real-time 

health data analytics, a vital component for response to national biosecurity threats.

Furthermore, this work possesses general applicability in biomedical informatics, as the 

proposed methods can be applied across disciplinary domains, DL architectures (e.g., 

MTCNN, MTHiSaN, transformers), and case studies in which it is not possible to re-train on 

the original data.

While our proposed approach offers a practical way to incorporate the rejection option for 

pre-trained classifiers, we acknowledge that there might be an implicit cost as the good 

global performance might come at the cost of unwanted behaviors across subgroups. In 

fact, it has been shown that marginal calibration does not account for differences between 

sub-populations or individuals [39], which is relevant for both fairness and personalized 

decision-making.

6. Conclusions

Accurate UQ is vital to developing trust in AI-based models while minimizing human labor. 

In this work, we developed computationally efficient and reliable methods for assessing 

the predictions from DL models classifying pathology reports in population-level data. In 

particular, selective classification methods for a posteriori UQ were developed and compared 

to the current standard, DAC.

In this study, we evaluated each selective classification method independently, but future 

work will explore combined approaches such as a majority vote rule, where robustness of 

the selection is achieved by retaining all reports where all or the majority of methods agree 

on the prediction. Moreover, although overall accuracy is the metric of interest for this study, 

other metrics such as precision, recall, and F-measure values might be more appropriate for 

similar studies.

In addition, although the sigmoid-based architecture in this analysis was not directly linked 

to the best performances on all tasks, such an implementation will allow us to extend 

the current study to more specific multi-label tasks for which jointly modeling multiple 

outcomes is required, such as biomarker extraction and clinical trials matching, where there 

may be zero, one, or multiple correct answers for a given report. In such studies, we will 

generalize the inclusion criteria of selecting only a single top prediction instead of selecting 

a set of predictions that make it past the threshold.
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Another extension of the current work will focus on improving the robustness of the 

proposed methods to many OOD test sets by tuning the accuracy in the validation set to 

achieve just about the required target level of accuracy in the test set, thereby minimizing 

the rejection rate. For in-training methods such as the DAC, the tuning of the accuracy is 

performed within the model; this approach produces quite liberal estimates that result in a 

high rejection rate, estimates that we showed were outperformed by the proposed methods.

Furthermore, since the loss function for the DAC balances the cross-entropy on the true 

classes with the cost of abstention, it might be that thresholding on the cross-entropy of the 

base model recovers the DAC performance. Effectively, this would imply that the activations 

on the true classes of the DAC match the base classifier. If that is indeed the case, then this 

work suggests a method to test new forms of the loss function that might retain more reports.

Lastly, future work will focus on in-depth analysis to understand the pattern of differences in 

predictions at the report and class levels among the newly proposed methods, as well as in a 

comparative analysis with the DAC, offering potential perspectives for accounting for class 

imbalance and, therefore, to improve further on the model’s performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of significance

Summary Description

Problem Deep neural networks (DNNs) show great performance on extraction and classification 
of information about tumor characterization from unstructured notes in electronic 
pathology reports, but uncertainty quantification is vital to develop a measure of the 
reliability of the model’s predictions.

What is already 
known

Performance gain from modified DNNs such as the current in-house deep learning–
based abstaining classifier (DAC) comes from the majority classes, with this method 
being limited by its high rejection rate in minority classes.

What this paper 
adds

We show how multiple a posteriori methods for selective classification can achieve the 
desired level of accuracy or higher and often the lowest rejection rate compared with the 
DAC; moreover, they also require no model retraining based upon the desired accuracy, 
resulting in higher rates of auto-coding and expedited processing.
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Fig. 1. 
Subfigure (a) shows the architecture of the MTCNN for multi-task classification. The model 

has three parallel filters with a different window size for each filter. The output from these 

filters is fed into a maxpooling layer and is then concatenated before a final softmax or 

sigmoid function is applied for each classification task. In subfigure (b), the MTHiSAN 

architecture is presented, showing how the different layers of word embeddings create a 

word hierarchy which is connected to a self-attention and target attention, respectively. The 

output of these attention mechanisms is directly connected to similar hierarchical attention 
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mechanisms, creating a hierarchy over the lines in a pathology report. These features create 

the document embedding, which are the extracted features used in the final classification 

layer.
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Fig. 2. 
Baseline accuracy for our models on validation and test data for both in-distribution, more 

recent holdout data (UTNJKYLASA) as well as OOD data (CA and NM). In all instances, 

the accuracy is lower than the required 97% level.
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Fig. 3. 
Experimental study 1: validation data. The accuracy level of about 97% is achieved with the 

displayed rejection rate. (*) and (x) represent the lowest and highest rejection rate by task.
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Fig. 4. 
Experimental study 1: more recent, hold-out test set. The tuning on the validation set 

resulted in higher accuracy on the test set than the target level of 97%, corresponding to the 

displayed rejection rate. (*) and (x) represent the lowest and highest rejection rate by task.
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Fig. 5. 
Experimental study 2: validation set (top) and more recent, hold-out test set (bottom). The 

tuning on the validation set for the same self-tuning accuracy selected by the DAC resulted 

in a higher accuracy than the target level of 97%. (*) and (x) represent the lowest and highest 

rejection rate by task. Also, all the proposed a posteriori methods retain a larger or equal rate 

of classes (i.e., number of retained predicted classes vs. ground truth CTC classes) compared 

to the DAC.
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Fig. 6. 
Experimental study 2: OOD test set – CA (top) and NM (bottom). The tuning on the 

validation set led to a higher accuracy on the test set than the target level of 97%. (*) and 

(x) represent the lowest and highest rejection rate by task. Also, all the proposed a posteriori 
methods retain a larger or equal rate of classes (i.e., number of retained predicted classes vs. 

ground truth CTC classes) compared to the DAC.
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Table 1

Number of electronic pathology reports considered in the study split by training, validation, and test data. 

Specifically, the models are trained using data from five registries (LA+KY+UT+NJ+SA) and evaluated on 

most recent (all reports after 2017) holdout data from these same five registries as well as two OOD registries 

(CA and NM).

Registry Training samples Validation samples Test samples

LAKYUTNJSA 1,864,099 398,266 371,820

LA 363,367 77,623 76,305

KY 361,981 76,920 80,588

UT 140,026 30,298 28,436

NJ 369,441 78,874 74,742

SA 629,284 134,551 111,749

CA n/a n/a 131,050

NM n/a n/a 158,056
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