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Abstract

Introduction: Machine learning algorithms are expected to work side-by-side with humans
in decision-making pipelines. Thus, the ability of classifiers to make reliable decisions is of
paramount importance. Deep neural networks (DNNSs) represent the state-of-the-art models to
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address real-world classification. Although the strength of activation in DNNs is often correlated
with the network’s confidence, in-depth analyses are needed to establish whether they are well
calibrated.

Method: In this paper, we demonstrate the use of DNN-based classification tools to benefit
cancer registries by automating information extraction of disease at diagnosis and at surgery
from electronic text pathology reports from the US National Cancer Institute (NCI) Surveillance,
Epidemiology, and End Results (SEER) population-based cancer registries. In particular, we
introduce multiple methods for selective classification to achieve a target level of accuracy

on multiple classification tasks while minimizing the rejection amount—that is, the number of
electronic pathology reports for which the model’s predictions are unreliable. We evaluate the
proposed methods by comparing our approach with the current in-house deep learning-based
abstaining classifier.

Results: Overall, all the proposed selective classification methods effectively allow for achieving
the targeted level of accuracy or higher in a trade-off analysis aimed to minimize the rejection rate.
On in-distribution validation and holdout test data, with all the proposed methods, we achieve on
all tasks the required target level of accuracy with a lower rejection rate than the deep abstaining
classifier (DAC). Interpreting the results for the out-of-distribution test data is more complex;
nevertheless, in this case as well, the rejection rate from the best among the proposed methods
achieving 97% accuracy or higher is lower than the rejection rate based on the DAC.

Conclusions: We show that although both approaches can flag those samples that should be
manually reviewed and labeled by human annotators, the newly proposed methods retain a larger
fraction and do so without retraining—thus offering a reduced computational cost compared with
the in-house deep learning-based abstaining classifier.

Keywords

Selective classification; Deep learning; Abstaining classifier; Text classification; Uncertainty
quantification; Accuracy; DNN; CNN; HiSAN; Pathology reports; NCI SEER

Introduction

Cancer is a major threat to human lives: large morbidity rates of about 1.9 million new
cancer diagnoses and over 600,000 cancer deaths are recorded in the United States per year.
Therefore, surveillance of cancer incidence is essential for monitoring public health. The
task, however, requires manual coding and review of clinical documents, and the associated
time and monetary costs make it impossible to perform such tasks in real time on a large
scale. Electronic pathology reports are an essential data source used by National Cancer
Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) program—-sponsored
population-based registries to document the diagnosis of cancer. Cancer registrars in the
United States are responsible for collecting cancer incidence data—including extracting
and classifying information about diagnosis, treatment modalities, and survival data from
unstructured notes and reports in a hybrid, Al-assisted manner. The vital records registries
with the state health departments are responsible for death data, including cancer deaths.
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The natural language processing (NLP) field for cancer applications is still dominated by
rule-based systems. Deep neural networks (DNNSs) have been very successful at addressing
many real-world classification problems [1,2]. As a result, DNN-based classification tools
are being deployed in situations where their decisions impact everyday life. The multi-task
(MT) convolutional neural network (CNN) and more advanced models have shown great
performance in information extraction of disease classification from electronic cancer
pathology reports [3-5]. In this context, the ability of Al classifiers to make reliable
decisions is critically important. As new architectures and components are introduced,
research has focused on improving the accuracy and speed of networks. Yet far less attention
has been given to determining when predictions can be trusted and when they cannot. In
other words, neural networks are effective at providing output that is correct most of the
time but, importantly, are less effective at identifying the extent to which the output can

be trusted, including when they amount to little more than educated guesses [6]. When

the accuracy of the model is imperfect, a human reviewer is required to verify that the Al
classifications are correct, reducing the cost savings meant to be realized through use of
Al-based tools [7]. Even if such a model is used only to assist manual classification, we face
the problem that inaccurate second opinions may distract — or worse, bias — human registrars
and degrade their performance. Therefore, accurate uncertainty quantification (UQ) is vital
to developing trust in an Al-based model. In particular, with calibrated UQ, we can trust a
machine learning (ML) model’s high-confidence decisions while minimizing human labor.

The rest of the paper is organized as follows. In Section 2, the context of our work within
recent literature is provided. In Section 3, we discuss the dataset for this study — namely,

the NCI SEER cancer pathology reports — and the two different model architectures we test
with our rejection methods. Section 4 details the findings of our experiments on the different
model architectures and rejection methods compared with the baseline model; experimental
findings on out-ofdistribution (OOD) data are also provided. In Section 5, we discuss the
methodological contributions and potential generalizability for informatics problems. Lastly,
we present conclusions and provide directions for future work in Section 6.

2. Background

2.1.

Related UQ work

A well-calibrated DNN model should demonstrate good confidence in its predictions, such
that it is accurate and indicates high uncertainty when producing inaccurate predictions,
thereby making it reliable and easy to interpret. In spite of recent advances in probabilistic
deep learning (DL) to improve model robustness, obtaining accurate quantification of
uncertainty estimates from DNNSs is still an open research problem [8]. Selective prediction
[9] is closely related to confidence estimation, as well as OOD detection [10,11] and
uncertainty calibration of DNNs [6,12]—that is, the accurate representation of predictive
probabilities with respect to true likelihood, which is a challenging problem because of the
unavailability of ground truth uncertainty estimates [8]. A distinction among these topics

is that calibration focuses on adjusting the overall confidence level of a model, globally
increasing or decreasing the model’s confidence on all samples, whereas sefective prediction
is based on relative confidence among the samples: the rejection rate in selective prediction
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results from model uncertainty rather than modelagnostic data uncertainty [13]. Existing
research to improve predictive uncertainty in DNNs for multiclass classification tasks can
be broadly classified into three categories, which aim to (1) improve the model input by
training the model with data augmentation; (2) improve the model parameters with Bayesian
and non-Bayesian probabilistic methods; and (3) improve the model accuracy with trainable
calibration measures or with post-processing confidence calibration.

Training the model with data augmentation—Methods aimed at improving the model
input by training the model with data augmentation produce extra samples during training
by augmenting the samples’ labels. Although data augmentation methods, most notably
Mixup [14] and AugMix [15], produce better-calibrated output, improve model robustness,
and can be effective OOD detectors, it is difficult in practice to introduce a wide spectrum
of perturbations and corruptions during training that comprehensively represent real-world
deployment conditions, especially when the samples’ label distribution is highly skewed and
data are high-dimensional.

Bayesian and non-Bayesian probabilistic methods—Probabilistic methods aimed
at improving the model parameters can be categorized as Bayesian and non-Bayesian.

Non-Bayesian probabilistic methods such as ensemble-based methods estimate confidence
based on the statistics of the ensemble model’s output. Most notably among this class

of models, deep ensembles [16] propose training an ensemble of neural networks from
different random initializations; while training, adversarial samples are generated to
improve model robustness and provide calibrated confidence [17]. However, ensembles

are computationally practical for small models only, as they introduce additional overhead
associated with training multiple models and significant memory complexity during testing.

In contrast, probabilistic Bayesian methods assume a prior distribution over the deterministic
parameters of the DNN and obtain confidence estimates through the posterior. Predictive
uncertainty is estimated as probability distributions over the output label probabilities
instead of a single scalar probability. Approximate Bayesian inference methods for DNNs
have been proposed, as computing the true posterior is intractable—maost notably in this
class of methods are variational inference approaches [18], stochastic gradient variants of
Markov Chain Monte Carlo [19], Monte Carlo dropout [20] and stochastic weight-averaging
Gaussian (SWAG) [21]. Approximate Bayesian inference methods are promising as they

are equivalent to using an ensemble for confidence estimation, but they require no actual
training and storing of multiple models. Nevertheless, they may fail to provide calibrated
uncertainty between separated regions of observations, as they tend to fit an approximation
to a local mode and do not capture the complete true posterior [22], potentially causing the
model to be overconfident under distributional shift.

Trainable confidence calibration—Trainable calibration methods are proposed to
integrate model calibration into classification training. One of the earliest trainable
approaches is entropy regularization [23]. The method proposes to use entropy as a
regularization term in loss functions for model calibration. One disadvantage of entropy
regularization is that the final classification loss depends on a very sensitive weight scalar.
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[24] propose to express calibration error as a tractable integral probability measure, that is,
the maximum mean calibration error (MMCE) computed in a reproducing kernel Hilbert
space. MMCE is an accurate method to minimize calibration error metrics while maximally
preserving the number of high-confidence predictions. [25] propose to add the difference
between confidence and accuracy (DCA) as an auxiliary loss term to the cross-entropy loss
for classification tasks. DCA estimates the expected calibration error by minimizing the
difference between the predicted confidence and the neural networks’ accuracy. A similar,
albeit different class of trainable calibration methods introduces abstention specific cost
into the loss function or learns to abstain so that the performance of the model reaches a
specific target [26]. Earlier work by [27] focuses on learning with abstention for binary
classification. Next, [28] developed a Structured Output Learning with Abstention (SOLA)
framework to allow abstaining from predicting, thus increasing the reliability of model
predictions. [29] proposed a deep abstaining classifier (DAC) that uses a DNN trained

with an extra abstention class for detecting OOD and novel samples. The DAC allows for
auto-tuning of a hyperparameter expressing the degree of penalty for abstention (see Section
2.1 of [29]) while also providing a separate abstention class that aids interpretability, as the
features supporting abstention can be interrogated. Although all these trainable calibration
strategies are effective, they require retraining for each desired confidence level.

Post-processing confidence calibration—Post-processing calibration includes
temperature scaling [12] and similar approaches such as Dirichlet calibration [30].
Temperature scaling is a widely used calibration method, which treats model calibration

as a post-processing task by scaling the output by a temperature parameter. Although the
optimization process of the temperature parameter is inexpensive, this method globally
increases or decreases the model’s confidence on all samples, resulting in unchanged
ranking of all samples’ confidence; thus, the calibration on the independent and identically
distributed validation dataset does not guarantee calibration under distributional shift.

In the same class of methods, a—posteriori confidence estimation, also known as selective
classification, is done by pairing a standard classifier with a confidence estimator. The
simplest approach considers the highest score from the probability distribution of the final
output layer of DNN models as a proxy for predictive confidence. [31] provides empirical
evidence that for DNN classifiers, in-distribution predictions do tend to have higher winning
scores than OOD samples, thus empirically justifying the use of softmax thresholding as a
useful baseline. Nevertheless, though the strength of activations in DNNs is often correlated
with the network’s confidence, in-depth analyses are needed to establish whether the
network’s outputs are well calibrated and can thus be employed to measure the uncertainty
of their prediction. Even so, this post-processing optimization process is inexpensive in
terms of time and cost of training, and it is also flexible in defining the uncertainty, or
accepting or rejecting the model predictions at a certain threshold level. Moreover, effective
confidence estimators can also be employed in active learning strategies in the context of
uncertainty sampling [32]. Finally, this approach easily allows coupling uncertainty and
explainability to align prediction probability with the actual accuracy in test data.
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2.2. Contribution of this work

In the context of our study, a specific accuracy level — higher, in practice, than what can

be achieved by the trained model for predictions on all data — must be met by the model
employed to perform information extraction from electronic text pathology reports from the
population-based cancer registries participating in the US NCI SEER program. Therefore,
it is crucial to identify the reports in which the model is less confident (i.e., the rejection
rate) so that its accuracy on the remaining retained set reaches the accuracy specified. This
ideally requires confidence to be calibrated to the accuracy and the confidence score to be
maximally discriminative—separating the correct predictions from the incorrect ones. With
infinite training data, we expect the neural net to extract all relevant features from the input
and for the prediction scores to converge to the Bayes risk, thus satisfying this optimality
criterion. However, it is an empirical question whether better scores can be designed in
particular applications. Therefore, we pair our classifier with four confidence estimators for
UQ to meet the accuracy requirements for our models. We test the proposed methods (1) by
evaluating the discriminating power as measured by the rejection rate while maintaining a
minimum targeted accuracy on the retained predictions within our four target classification
tasks, as well as (2) by comparing the rejection rate with the current in-house DL-based
abstaining classifier that is designed to use a trainable DL calibration technology to extract
features specifically associated with confidence [29]. We show that though both methods
can flag the samples that require manual review, the newly proposed methods retain a
larger fraction and can do so without retraining. Thus, the method proposed herein results
in a reduced computational cost compared with that of the in-house DL-based abstaining
classifier.

3. Materials and methods

3.1. Cancer pathology report data

The data for our information extraction task comprise electronic cancer pathology reports
collected by the NCI SEER program from seven different cancer registries: California (CA),
New Mexico (NM), Kentucky (KY), Louisiana (LA), New Jersey (NJ), Seattle (SA), and
Utah (UT). Each new primary tumor diagnosis is assigned a unique tumor ID and pathology
reports consisting of highly technical, partially structured text characterizing the tumor at the
time of the diagnosis (i.e., biopsy pathology reports) or at the time of surgery (i.e., surgical
pathology reports). Notably, the structure of the text varies somewhat among pathology
laboratories and from registry to registry: standard structured analysis systems often do

not generalize very well. The ground truth labels for these reports are manually annotated
by certified tumor registrars at the tumor level in the Cancer/Tumor/Case (CTC) database,
which stores all diagnostic, staging, and treatment information for reportable cancers in

the SEER Data Management System (SEER*DMS). In particular, the pathologists write

the free-form text and may have options for drop-down entry. The reports are then sent to
registrars at a SEER registry, who use standardized reporting guidelines instituted by the
SEER program? to code the written reports. The standardized International Classification
of Diseases for Oncology (ICD-0-3) terminology is used for the four tasks of interest in

1https://seer.cancer.gov/tools/codingmanuals/.
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this study: primary cancer site (Site, 70 CTC classes), primary anatomic subsite (Subsite,
324 CTC classes), laterality (Laterality, 7 CTC classes), and histological type (Histology,
620 CTC classes).2 An example of CTC codes for primary anatomic subsite is shown in
Supplementary Figure 1. Even though most pathology reports are associated with only a
single tumor, the converse is not true (i.e., a single tumor may have more than one pathology
report); therefore, the ground truth being available only at the tumor level means that any
particular report may not have the information to decide on the correct classification, leading
to an irreducible Bayes’ error in the predictions of the trained model.

Deep learning models for text classification

This paper compares DNNs with differing combinations of architectures and activation
functions. See Fig. 1 for a visual representation of the different DNN architectures that

we consider. The first model considered is a TextCNN [1,33], which is one of the

most successful and widely used CNN models for text classification. It consists of three
parts: word embedding, 1D convolution, and a fully connected decision layer. Word
embedding is a learned representation of terms that maps a set of words onto vectors of
numerical representations with the same semantic meaning and similar observation. The
1D convolution layer has a series of 1D convolution filters that have latent representations
to articulate the features in the word vectors of documents. The identified features are
passed to the fully connected layer to make inferences. MTCNN [4] is an extension of
TextCNN that applies the multi-task learning (MTL) mechanism [34] to the decision layer.
A classifier learns multiple tasks simultaneously and finds an optimal latent representation
to solve a series of related tasks. The MTL helps find more generalized solutions than
single-task models, thus yielding higher task performance. The second architecture is

a hierarchical self-attention network (MTHiISAN), which is the current state-of-the-art
model for classifying electronic cancer pathology reports [3,35,36]. This DL architecture
is composed of two hierarchies, each containing several self-attention layers. The word-level
hierarchy takes in word embeddings and generates a line embedding representation for
each line in the pathology report. Next, the line-level hierarchy utilizes line embeddings to
generate a document embedding representation that can then be used for classification. A
multi-task decision layer is then used to simultaneously classify on all relevant tasks for
each input document. For this study, both the MTCNN and the MTHiISAN architectures
are developed in a multilabel classification (MLC) setting aimed to simultaneously output a
prediction across all existing classes.

The pathology report, the written description of a histological examination, is the most
accurate method for diagnosing cancer. Examples of pathology reports can be found on

the NCI SEER website.3 SEER cancer registries collect demographic, tumor (including
pathology reports), treatment, and outcome data for all cancer cases diagnosed within their
catchment area. Tumor registrars abstract information from pathology and other medical
reports to organize, summarize, and categorize information about each tumor. The manually
coded categorical information is used for our training labels. The pathology report text

2The class counts reported here were obtained with consideration of the universe of CTC labels across all SEER registries; a lower
count class is reported in our experiments, as we are considering samples from only a few registries out of all SEER registries.
https://training.seer.cancer.gov/abstracting/procedures/pathological/histologic/operative/example/.
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is free-form and generally messy. Therefore, we implemented the following cleaning
procedures before training the model. Before being used in the neural networks, each
electronic pathology report was subjected to a preprocessing step to minimize formatting
inconsistencies across the dataset. This step consists of converting all text to lowercase,
stripping all documents of any hex escapes and unicode characters, and replacing numerical
values greater than 100 with either ‘large_int_token’ or ‘large_float_token’ depending on
the format of the value being replaced. The resulting sequence of words in the processed
documents is then tokenized to a sequence of integer indices, so that each word in the
vocabulary is mapped to a unique integer value. So that reports can be used as input to each
network, we reverse the word order of each and truncate to a uniform length of 3000 tokens.
Mathematically, for documents shorter than 3000 words (99% of the documents are less
than 3000 tokens), reversing word order has no effect on model performance: both MTCNN
and MTHISAN are immune to reversing word order if both train/val/test documents are
reversed the same way. For documents longer than 3000 words, the last 3000 tokens are
used because the final diagnosis is detailed at the end of the report and tends to have the
most useful information. Next, the documents are padded with 0s, which map to the <pad>
token, which MTCNN and MTHISAN are designed to ignore. Lastly, the integer tokens are
passed either through the convolutional and maxpool layers in the MTCNN or through the
hierarchical word and line embedding layers in MTHISAN to extract the features passed

to either the softmax or sigmoid activation function. When a softmax activation function is
used, the probabilities by class will always sum to one because they are modeled as a joint
distribution. However, when a sigmoid activation function is used, the outcomes are modeled
independently, and, therefore, the resulting probabilities are not constrained to sum to one.
The assumption of independence of the outcome may play a key role in the decision to
abstain.

The models are trained on aggregated data from five registries (LA + KY + UT + NJ + SA)
and evaluated on the most recent (all reports after 2017) holdout data from these same five
registries as well as samples from two OOD registries (CA and NM). The support of these
sets is detailed in Table 1.4 This study design is relevant in the context of our application,
as new data from current registries are available every year, and collaboration with new
registries is ongoing. The study was executed according to the Institutional Review Board
(IRB) protocol DOE000619, approved by Central DOE Institutional Review Board on April
6, 2021 (initial approval on September 23, 2016).

3.3. Proposed UQ methods

We use a DAC [29] as the multitask abstaining classifier for classifying electronic text
pathology reports. The DAC is a regular DNN but with an additional unlabeled abstention
class and a modified version of the standard cross-entropy loss function required to allow
abstention during the training. The DAC is trained such that if the model is not highly
confident on a particular sample, it will predict the abstention class, indicating that the
model should abstain on that sample. In addition, since the abstention is determined during

4Although we document the count of reports from each single registry, we do not explicitly account for this split in the model;
therefore, we refer to the data as the LAKYUTNJSA set.
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training, confusing examples tend to be down-weighted during training, leading to a better
model. Further details regarding the loss function and the development of the DAC can be
found in [37].

Nevertheless, the relative performance of a DAC to other UQ strategies is an empirical
question that can depend on the problem instance. Therefore, this work investigates multiple
selective classification strategies as a comparison to the DAC performance. Examination

of more flexible strategies that require no model retraining upon changing the desired
accuracy may reduce the computational costs of training the model and increase flexibility
for downstream users. The training of DL models is typically the most computationally
expensive part of the process, making retraining impractical for other practitioners with
limited resources. Moreover, if new modeling strategies are flexible enough to adapt to OOD
data, barriers of use in new datasets will be reduced.

Let us consider the output from our DL model, yielding the predicted probabilities

() = p(y1)s - .., p(y,) Tor the ith pathology report (with i = 1, ..., n) of belonging to any
one of the « classification labels (with j = 1, ..., k) for each classification task considered
in the study. The strategies proposed below are all calculated at the pathology report level;
therefore, to simplify the notation, we will drop the i index.

Fixed confidence score.—This is probably the most simplistic way to apply a
thresholding criteria. No transformation is applied to the predicted probabilities p(y)), ..., p(3)
and among these we select the highest one. We abstain on all reports with a highest
predicted probability less than or equal to a threshold value in the interval [0, 1]. For

perfect training, this probability should guarantee the accuracy on the retained set of reports;
however, in practice, one may need to calibrate it using a validation set.

Delta difference confidence score.—This method is motivated by the expectation
that when the model is confident in predicting, differences between the highest predicted
probability and all the remaining probabilities should be large. In practice, such differences
are well captured by the two highest predicted probabilities. Therefore, we compute a
confidence score as the difference between the two top predicted probabilities. We do not
retain samples with a confidence score less than or equal to a threshold value in the interval
[0, 1], with the threshold being tuned to reach the target accuracy on the retained set.

Entropy ratio confidence score.—This method considers variations among all the
predicted probabilities. First, we calculate the Shannon entropy — =f_, p(y)log,(p(y,)); this
measure can be used as an adjustment factor because it informs on the confidence of the
model’s predictions (i.e., an entropy score close to 0 indicates that the model is confident in
its prediction). Therefore, we compute the confidence score as the ratio between the highest
predicted probability and the Shannon entropy. We abstain on samples with confidence

max[p(»), ..., p(¥)] which
= plog,(p() |

scores less than or equal to a threshold value in the interval |0,

again must be tuned.
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Bayes beta confidence score.—This strategy is quite different from the methods
presented above, as it relies on parametric assumptions necessary to describe the distribution
of the correctly and incorrectly classified labels. Specifically, the confidence score is
estimated as the conditional probability of a correct classification, which is based on

the Bayes theorem for a binary variable, where being correct and incorrect are mutually
exclusive outcomes:

p(y;lcorrect) - p(correct)
p(y;lcorrect) - p(correct) + p(y;lincorrect) - p(incorrect) *

p(correctly;) =

The marginal probabilities p(correct) and p(incorrect) are called priorsand are estimated as
the corresponding relative frequencies: the total number of correct or incorrect decisions
divided by the total number of cases. The conditional probabilities p(y;|correct) and
p(y;lincorrect) are estimated from the data assuming p(y,correct) ~ Beta(@eomects Yeorec) 2N
p(y;lincorrect) ~ Beta(ncomeas Yincoree)s WHETe the parameters « and y are obtained via maximum
likelihood estimation (MLE). We will abstain on samples with confidence scores less than
or equal to a threshold value in the interval [0, 1]. Again, though this method is expected to
provide guarantees on the accuracy depending on the threshold value, in real examples, one
may need to calibrate the score using validation data.

The accuracy and the rejection rate are correlated, and we want to minimize rejections while
achieving the desired accuracy. Therefore, we measure the performance of our models by
comparing the rejection rate while maintaining the required accuracy level on the retained
predictions within our four classification tasks. The overall accuracy is the chosen evaluation
metric, as we are mainly interested in the count of correctly predicted labels (i.e., true
positive). Moreover, we compute the accuracy along with a 95% confidence interval from an
exact test based on the binomial distribution (see Clopper—Pearson intervals [38]).

In this particular study, we know the ground truth for each pathology report in the training,
validation, and test sets. Generally, however, tuning the threshold values for our proposed a
posteriori rejection methods on a target dataset (e.g., a new cancer registry or new incoming
reports for existing cancer registries) may be infeasible in real-world settings due to a lack of
ground truth labels. Instead, these values may need to be tuned on existing labeled training
data and then applied to the target dataset. Therefore, for our study, we utilize the validation
set to tune the threshold values for the a posteriori rejection methods and then use these
tuned values to quantify the rejection rate on the test set where we expect to achieve the
target accuracy (or higher) with the lowest possible rejection rate.

4. Results

For this study, we set a target accuracy level of 97%, a value high enough to consider the
prediction scores trustworthy — comparable to the level at which registrars can manually
annotate (~97%) — while mitigating human annotators’” workload for state cancer registries.
We present the results for a combination of architectures (MTCNN and MTHiISAN) and
activation functions (i.e., softmax and sigmoid).
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The baseline performance of our models for the four tasks considered is presented in Fig. 2.
For all tasks — primary cancer site, primary anatomic subsite, laterality, and histological type
—and for all combinations of architectures and activation functions, the baseline accuracy
without rejection is lower than the target 97% on the validation data and on the test data for
in-distribution, more recent holdout data (UTNJKYLASA) and for OOD data (CA and NM).
For this reason, we leverage the selective classifications methods to increase the accuracy to
the targeted level or higher in a trade-off analysis aimed to minimize the rejection rate.

4.1. Experimental study 1

This first study tested whether the proposed thresholding methods enable an accuracy level
in the test set equal to or higher than the accuracy level in the validation set; it also exploits
the performance of the different methods within the proposed architecture and activation
function strategies. A specific tuning approach is required for the accuracy level on the
validation data, whereas the current implementation of the DAC is self-tuning. For this
reason, the DAC is excluded from this comparison.

For each of the proposed methods, Fig. 3 shows the tuning to the 97% accuracy level
performed on the validation data to identify the threshold values to be used on the test set.
The rejection rate associated with the 97% accuracy level is displayed next to the accuracy
level. The results for the test set are presented in Fig. 4. As expected, with all the proposed
methods and for all combinations of architecture and activation functions, we achieve a
higher level of accuracy than 97% for all tasks.

The best performing method by task is selected as the one achieving 97% accuracy or
higher and the lowest rejection rate. In both Figs. 3 and 4, the best performing method

by task is denoted with an asterisk (*), whereas the worst performing method is denoted
with an (x). The MTHIiSAN architecture typically retains higher accuracy than the MTCNN
architecture. The sigmoid is the selected architecture for laterality only, whereas for all other
tasks the softmax architecture is selected based on lower rejection rate. Among the proposed
approaches, the delta difference generally leads to lower rejection rate.

It should be noted that though a retention rate on the test set of 31.1% for histological
type, or 40.3% for primary anatomic subsite, might seem low, the pathology coding API
is currently in production in 13 SEER registries processing more than 3 million reports
annually, which translates to a huge time savings of person-hours compared with that
required by manual coding.

4.2. Experimental study 2

This second study aims to compare the performance of the proposed methods with the
current in-house DAC. Therefore, we tune all methods on the validation set for the same
self-tuning accuracy selected by the DAC, as shown at the top of Fig. 5. Next, the same
thresholds found on the validation set are applied to the test set, and the results are
presented at bottom of Fig. 5. Recalling that from the results of our first experimental study,
the MTHiISAN model with the softmax activation function typically demonstrates higher
accuracy at a lower rejection rate, in this second experimental study we present results on
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this selected architecture only. The full set of results, including the MTCNN model and with
both activation functions, is reported in the Supplementary file.

Again, as expected, with all the proposed methods, we achieve an accuracy level higher than
97% on the holdout test set. On both the validation and the test sets, the proposed methods
guarantee the 97% accuracy target level, but the best of them also lead to lower rejection
rates than those from the DAC method.

We further extend the comparative analysis to two registries not included in the training
or the validation set, namely CA (Fig. 6, top) and NM (Fig. 6, bottom). This is a strong
test of the generalization of the proposed methods, as the distribution of the labels in these
OOD registries is not necessarily represented by the registries included in the training set.
Nevertheless, in both OOD cases, the rejection rate from the best among the proposed
methods is lower than the abstention based on the DAC.

Overall, although the differences in retention rates compared to the current in-house

DAC may seem small, such differences translate to tens of thousands of reports being
automatically classified on all sets (training/validation/test) because of the large number of
reports included in the study. Also, because the registries receive several million reports
annually, significant savings in person-hours can be achieved when the proposed methods
are deployed.

Furthermore, in this second experimental study, we also investigate how the retained
predictions vary among classes in terms of the count of predicted classes retained at

the specified accuracy and corresponding rejection rate. Our results show that our model
predicts on multiple classes: at the very high 97% accuracy level required, the retained
predictions vary across multiple classes. Moreover, all the proposed a posteriori methods
better preserve the class distribution compared to the DAC by retaining samples that vary
among a higher number of predicted classes out of all ground truth CTC classes at a larger
or equal rate of classes (number of retained predicted classes vs. ground truth CTC classes)
compared to the DAC—both for in-distribution data (Fig. 5) and for OOD test data (Fig. 6).
Additional details on the number of retained samples by categories of classes (rare classes,
common classes, and most prevalent classes) are provided in Section 2 of the Supplementary
file.

As a case example, we can consider the results for the test set for anatomic subsite
presented in Fig. 5 (bottom): with the best performing out of the proposed methods (i.e.,
entropy), 132 out of 312 classes are represented when optimizing the rejection rate while
maintaining an arbitrarily fixed prediction accuracy of 0.97 or higher. Precisely, 138,949
({100-62.63}*371,820/100) samples can be correctly predicted at an accuracy level of 0.98
(95% CI: [0.979;0.981]); these samples are retained among 132 classes of the original 312
CTC classes. On the other hand, with the DAC, a lower number of samples — 134,152
({100-63.92}*371,820/100) — can be correctly predicted at the same accuracy level of 0.98
(95% CI: [0.979;0.981]) but representing only 108 classes out of 312 CTC classes.

A larger number of retained classes achieved by using the proposed methods instead of the
DAC is encouraging, as the model learned to classify examples while treating the classes
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with equal importance; nevertheless, classes do not have the same frequencies, so it is
difficult to obtain the same accuracy in each class, and the DAC seems more oriented to
increasing the number of correct predictions from the majority class than from the minority
ones. Conversely, the a posteriori methods better preserve the class distribution retained at
the specified accuracy and corresponding rejection rate.

5. Discussion

In this study we proposed methods for UQ of DL models for text classification from
electronic pathology reports.

We measure the performance of our models by optimizing the rejection rate while
maintaining an arbitrarily fixed prediction accuracy level. The overall accuracy is the chosen
evaluation metric, as we are mainly interested in the count of correctly predicted labels, or
true positives. Identifying the samples where the model is less confident (i.e., the rejection
rate) allows us to achieve the required level of accuracy on the remaining retained set of
samples and thus obtain a real-world—deployable model in a high-risk setting, in which
incorrect decisions have the potential to adversely affect patient and population health. All of
the methods presented are flexible and can be tuned to fit the user’s need.

We evaluated the proposed methods (1) by comparing the rejection rate while maintaining
a minimum targeted accuracy on the retained predictions, as well as (2) by comparing the
rejection rate with the current in-house DAC model for text classification.

The following conclusions represent recommendations to achieve the required target (or
higher) level of accuracy and the lowest rejection rate: (1) the use of the MTHISAN
architecture leads to better performance than MTCNN; (2) the softmax activation function

is preferred to the sigmoid activation function for the majority of tasks; and (3) the delta

and entropy ratio methods are most effective, indicating that differences among the predicted
probabilities of all class labels are important.

Overall, all the proposed methods effectively allow for achieving the targeted level accuracy
or higher in a trade-off analysis aimed to minimize the rejection rate. On validation and
holdout test data, with all the proposed methods, we achieve on all tasks the required target
level of accuracy with a lower rejection rate than the DAC. Interpreting the results for the
OOD test data is more complex; nevertheless, in this case as well, the rejection rate from
the best among the proposed methods achieving 97% accuracy or higher is lower than the
rejection rate based on the DAC.

Also, compared to the DAC and other trainable confidence calibration approaches, the
proposed post-processing optimization methods are inexpensive in terms of training time
and cost while remaining flexible in defining the uncertainty—that is, accepting or rejecting
the model predictions at a certain threshold level.

Additionally, all the proposed a posteriori methods better preserve the class distribution
compared to the DAC, as the class rate (no. of predicted classes vs. no. of ground truth CTC
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classes) retained at the specified accuracy and corresponding rejection rate is higher when
the reports are selected with any of the proposed a posteriori methods compared to the DAC.

This research product impacts real-world biomedical applications, directly benefiting the
NCI by reducing the time to solution when training new models, as the UQ methods can

be calculated a posteriori. The new methods also reduced the rejections across all prediction
tasks, resulting in higher rates of auto-coding and expedited processing.

In addition, this work highlights DOE’s capability to provide robust solutions for real-time
health data analytics, a vital component for response to national biosecurity threats.

Furthermore, this work possesses general applicability in biomedical informatics, as the
proposed methods can be applied across disciplinary domains, DL architectures (e.g.,
MTCNN, MTHiSaN, transformers), and case studies in which it is not possible to re-train on
the original data.

While our proposed approach offers a practical way to incorporate the rejection option for
pre-trained classifiers, we acknowledge that there might be an implicit cost as the good
global performance might come at the cost of unwanted behaviors across subgroups. In
fact, it has been shown that marginal calibration does not account for differences between
sub-populations or individuals [39], which is relevant for both fairness and personalized
decision-making.

6. Conclusions

Accurate UQ is vital to developing trust in Al-based models while minimizing human labor.
In this work, we developed computationally efficient and reliable methods for assessing

the predictions from DL models classifying pathology reports in population-level data. In
particular, selective classification methods for a posteriori UQ were developed and compared
to the current standard, DAC.

In this study, we evaluated each selective classification method independently, but future
work will explore combined approaches such as a majority vote rule, where robustness of
the selection is achieved by retaining all reports where all or the majority of methods agree
on the prediction. Moreover, although overall accuracy is the metric of interest for this study,
other metrics such as precision, recall, and F-measure values might be more appropriate for
similar studies.

In addition, although the sigmoid-based architecture in this analysis was not directly linked
to the best performances on all tasks, such an implementation will allow us to extend

the current study to more specific multi-label tasks for which jointly modeling multiple
outcomes is required, such as biomarker extraction and clinical trials matching, where there
may be zero, one, or multiple correct answers for a given report. In such studies, we will
generalize the inclusion criteria of selecting only a single top prediction instead of selecting
a set of predictions that make it past the threshold.
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Another extension of the current work will focus on improving the robustness of the
proposed methods to many OOD test sets by tuning the accuracy in the validation set to
achieve just about the required target level of accuracy in the test set, thereby minimizing
the rejection rate. For in-training methods such as the DAC, the tuning of the accuracy is
performed within the model; this approach produces quite liberal estimates that result in a
high rejection rate, estimates that we showed were outperformed by the proposed methods.

Furthermore, since the loss function for the DAC balances the cross-entropy on the true
classes with the cost of abstention, it might be that thresholding on the cross-entropy of the
base model recovers the DAC performance. Effectively, this would imply that the activations
on the true classes of the DAC match the base classifier. If that is indeed the case, then this
work suggests a method to test new forms of the loss function that might retain more reports.

Lastly, future work will focus on in-depth analysis to understand the pattern of differences in
predictions at the report and class levels among the newly proposed methods, as well as in a
comparative analysis with the DAC, offering potential perspectives for accounting for class
imbalance and, therefore, to improve further on the model’s performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of significance

Summary

Description

Problem

Deep neural networks (DNNSs) show great performance on extraction and classification
of information about tumor characterization from unstructured notes in electronic
pathology reports, but uncertainty quantification is vital to develop a measure of the
reliability of the model’s predictions.

What is already
known

Performance gain from modified DNNs such as the current in-house deep learning—
based abstaining classifier (DAC) comes from the majority classes, with this method
being limited by its high rejection rate in minority classes.

What this paper
adds

We show how multiple a posteriori methods for selective classification can achieve the
desired level of accuracy or higher and often the lowest rejection rate compared with the
DAC; moreover, they also require no model retraining based upon the desired accuracy,
resulting in higher rates of auto-coding and expedited processing.
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Fig. 1.
Subfigure (a) shows the architecture of the MTCNN for multi-task classification. The model

has three parallel filters with a different window size for each filter. The output from these
filters is fed into a maxpooling layer and is then concatenated before a final softmax or
sigmoid function is applied for each classification task. In subfigure (b), the MTHiISAN
architecture is presented, showing how the different layers of word embeddings create a
word hierarchy which is connected to a self-attention and target attention, respectively. The
output of these attention mechanisms is directly connected to similar hierarchical attention
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mechanisms, creating a hierarchy over the lines in a pathology report. These features create
the document embedding, which are the extracted features used in the final classification
layer.
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Baseline
Task Set Registry Architecture Accuracy [95% Cl]
Laterality Validation ~UTNJKYLASA MTHiSAN - Softmax * 0.914 [0.913,0.915]
Test UTNJKYLASA  MTHISAN - Softmax * 0.924 [0.923,0.925]
OOD Test CA MTHIiSAN - Softmax * 0.903 [0.901,0.904]
OOD Test NM MTHISAN - Softmax L 2 0.905 [0.903,0.906]
Validation UTNJKYLASA MTHiSAN - Sigmoid * 0.915[0.914,0.916]
Test UTNJKYLASA  MTHISAN - Sigmoid * 0.926 [0.925,0.927]
OOD Test CA MTHiSAN - Sigmoid * 0.903 [0.901,0.904]
OOD Test NM MTHISAN - Sigmoid < 0.906 [0.905,0.908]
Validation ~UTNJKYLASA MTCNN - Softmax * 0.908 [0.907,0.909]
Test UTNJKYLASA  MTCNN - Softmax * 0.92[0.919,0.92]
OOD Test CA MTCNN - Softmax * 0.897 [0.896,0.899]
OOD Test NM MTCNN - Softmax * 0.901 [0.9,0.903]
Validation ~UTNJKYLASA MTCNN - Sigmoid * 0.91 [0.909,0.911]
Test UTNJKYLASA  MTCNN - Sigmoid * 0.921 [0.921,0.922]
OOD Test CA MTCNN - Sigmoid L 2 0.9 [0.898,0.901]
00D Test NM MTCNN - Sigmoid * 0.902 [0.901,0.904]
Primary Site Validation ~UTNJKYLASA  MTHISAN - Softmax * 0.921 [0.92,0.922]
Test UTNJKYLASA  MTHISAN - Softmax * 0.93[0.93,0.931]
OOD Test CA MTHISAN - Softmax * 0.927 [0.926,0.929]
OOD Test NM MTHISAN - Softmax * 0.912[0.911,0.913]
Validation ~UTNJKYLASA  MTHISAN - Sigmoid * 0.918 [0.917,0.919]
Test UTNJKYLASA  MTHISAN - Sigmoid * 0.928 [0.927,0.928]
0OD Test CA MTHiISAN - Sigmoid * 0.924 [0.922,0.925)
OOD Test NM MTHISAN - Sigmoid * 0.911[0.909,0.912]
Validation UTNJKYLASA MTCNN - Softmax * 0.917 [0.916,0.917]
Test UTNJKYLASA  MTCNN - Softmax * 0.926 [0.925,0.927]
00D Test CA MTCNN - Softmax * 0.924 [0.922,0.925)
OOD Test NM MTCNN - Softmax * 0.909 [0.908,0.911]
Validation ~UTNJKYLASA MTCNN - Sigmoid * 0.911[0.91,0.912]
Test UTNJKYLASA  MTCNN - Sigmoid * 0.921[0.92,0.922]
OOD Test CA MTCNN - Sigmoid * 0.918[0.916,0.919]
OOD Test NM MTCNN - Sigmoid * 0.905 [0.904,0.907]
Anatomic Subsite  Validation ~UTNJKYLASA  MTHISAN - Softmax * 0.677 [0.676,0.679]
Test UTNJKYLASA  MTHISAN - Softmax * 0.716 [0.715,0.718]
OOD Test CA MTHISAN - Softmax L 2 0.712[0.71,0.715]
OOD Test NM MTHiSAN - Softmax * 0.664 [0.662,0.667]
Validation UTNJKYLASA MTHISAN - Sigmoid * 0.629 [0.628,0.631]
Test UTNJKYLASA  MTHISAN - Sigmoid * 0.663 [0.661,0.664]
OOD Test CA MTHIiSAN - Sigmoid * 0.671 [0.669,0.674]
OOD Test NM MTHISAN - Sigmoid * 0.629 [0.627,0.632]
Validation UTNJKYLASA MTCNN - Softmax * 0.668 [0.667,0.67]
Test UTNJKYLASA  MTCNN - Softmax * 0.707 [0.706,0.709]
00D Test CA MTCNN - Softmax * 0.708 [0.705,0.71]
OOD Test NM MTCNN - Softmax L 2 0.666 [0.664,0.668]
Validation ~UTNJKYLASA MTCNN - Sigmoid * 0.626 [0.624,0.627]
Test UTNJKYLASA  MTCNN - Sigmoid * 0.661 [0.659,0.662]
OOD Test CA MTCNN - Sigmoid * 0.67 [0.668,0.673]
OOD Test NM MTCNN - Sigmoid * 0.627 [0.625,0.629]
Histological Type  Validation ~UTNJKYLASA  MTHISAN - Softmax < 0.776 [0.775,0.777]
Test UTNJKYLASA  MTHISAN - Softmax * 0.787 [0.786,0.788]
OOD Test CA MTHISAN - Softmax * 0.792 [0.789,0.794]
OOD Test NM MTHISAN - Softmax * 0.747 [0.745,0.749)]
Validation UTNJKYLASA MTHiSAN - Sigmoid * 0.738 [0.736,0.739]
Test UTNJKYLASA  MTHISAN - Sigmoid * 0.771[0.77,0.772]
OOD Test CA MTHISAN - Sigmoid * 0.769 [0.766,0.771]
OOD Test NM MTHISAN - Sigmoid * 0.725 [0.723,0.727]
Validation ~UTNJKYLASA MTCNN - Softmax * 0.77 [0.769,0.771]
Test UTNJKYLASA  MTCNN - Softmax * 0.787 [0.786,0.789]
OOD Test NM MTCNN - Softmax * 0.749 [0.747,0.751)
OOD Test CA MTCNN - Softmax * 0.789 [0.787,0.791]
Validation ~UTNJKYLASA MTCNN - Sigmoid * 0.726 [0.725,0.728]
00D Test CA MTCNN - Sigmoid * 0.762[0.76,0.764]
Test UTNJKYLASA  MTCNN - Sigmoid * 0.768 [0.767,0.77]
OOD Test NM MTCNN - Sigmoid ¢ 0.724 [0.722,0.727]
0.6 0.7 0.8 0.9
Accuracy

Fig. 2.

Page 21

Baseline accuracy for our models on validation and test data for both in-distribution, more
recent holdout data (UTNJKYLASA) as well as OOD data (CA and NM). In all instances,
the accuracy is lower than the required 97% level.
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Validation Set UTNJKYLASA - Support=398,266

Task Method Architecture Accuracy [95% CI]  Rejection (%)
Laterality Fixed MTHiSAN - Softmax L & 0.97 [0.97,0.971] 13.56
Delta MTHiSAN - Softmax 2 & 0.97 [0.969,0.971] 13.59
Entropy MTHISAN - Softmax < 0.97 [0.969,0.971] 13.73
Bayes-Beta MTHIiSAN - Softmax 2 &l 0.97 [0.969,0.971] 13.56
Fixed MTHISAN - Sigmoid Lo 0.97 [0.97,0.971] 13.18
Delta MTHISAN - Sigmoid 2 & 0.97 [0.969,0.971] 13.02 (%)
Entropy MTHISAN - Sigmoid 2 o 0.97 [0.969,0.971] 13.46
Bayes-Beta MTHISAN - Sigmoid 2 & 0.97 [0.969,0.971] 13.16
Fixed MTCNN - Softmax Il 0.97 [0.969,0.971] 17.06
Delta MTCNN - Softmax 2 & 0.97 [0.969,0.971] 16.78
Entropy MTCNN - Softmax = al 0.97 [0.969,0.971] 17583 (x)
Bayes-Beta MTCNN - Softmax 2 gl 0.97 [0.969,0.971] 17.03
Fixed MTCNN - Sigmoid 2 &l 0.97 [0.969,0.971] 15.6
Delta MTCNN - Sigmoid 2 & 0.97 [0.969,0.971] 15.35
Entropy MTCNN - Sigmoid - 0.97 [0.969,0.971] 15.84
Bayes-Beta MTCNN - Sigmoid = g 0.97 [0.969,0.971] 15.6
Primary Site Fixed MTHISAN - Softmax = = 0.97 [0.969,0.971] 1061 (%)
Delta MTHISAN - Softmax o 0.97 [0.969,0.971] 10.69
Entropy MTHISAN - Softmax < 0.97 [0.969,0.971] 10.85
Bayes-Beta MTHiSAN - Softmax & 0.97 [0.969,0.971] 10.62
Fixed MTHISAN - Sigmoid L 2 0.97 [0.97,0.971] 12.29
Delta MTHISAN - Sigmoid 2 &l 0.97 [0.969,0.971] 12.01
Entropy MTHISAN - Sigmoid o+ 0.97 [0.969,0.971] 12.75
Bayes-Beta MTHISAN - Sigmoid - 0.97 [0.969,0.971] 12.27
Fixed MTCNN - Softmax L2 0.97 [0.97,0.971] 12.44
Delta MTCNN - Softmax = & 0.97 [0.969,0.971] 12.35
Entropy MTCNN - Softmax 2 al 0.97 [0.969,0.971] 12.95
Bayes-Beta MTCNN - Softmax = a 0.97 [0.969,0.971) 12.43
Fixed MTCNN - Sigmoid = ol 0.97 [0.969,0.971] 14.35
Delta MTCNN - Sigmoid 2 & 0.97 [0.969,0.971] 13.6
Entropy MTCNN - Sigmoid 2 &l 0.97 [0.969,0.971] 153  (x)
Bayes-Beta MTCNN - Sigmoid [Rex 0.97 [0.969,0.971] 14.35
Anatomic Subsite  Fixed MTHISAN - Softmax 2 & 0.97 [0.969,0.971] 64.49
Delta MTHiSAN - Softmax 2 2 0.97 [0.969,0.971] 64.65
Entropy MTHISAN - Softmax - 0.97 [0.969,0.971] 64.47 (")
Bayes-Beta MTHISAN - Softmax o 0.97 [0.969,0.971) 64.47
Fixed MTHISAN - Sigmoid 2 & 0.97 [0.969,0.971] 67.85
Delta MTHISAN - Sigmoid 2 0.97 [0.969,0.971] 66.94
Entropy MTHiSAN - Sigmoid 2 & 0.97 [0.969,0.971] 68.3
Bayes-Beta MTHISAN - Sigmoid 2 & 0.97 [0.969,0.971] 67.85
Fixed MTCNN - Softmax 2 2 0.97 [0.969,0.971] 67.42
Delta MTCNN - Softmax 2 ol 0.97 [0.969,0.971] 67.33
Entropy MTCNN - Softmax 2 o 0.97 [0.969,0.971] 67.59
Bayes-Beta MTCNN - Softmax = & 0.97 [0.969,0.971] 67.45
Fixed MTCNN - Sigmoid 2 & 0.97 [0.969,0.971] 71.01
Delta MTCNN - Sigmoid = o 0.97 [0.969,0.971] 70.08
Entropy MTCNN - Sigmoid - 0.97 [0.969,0.971] 7271 (%)
Bayes-Beta MTCNN - Sigmoid 2 & 0.97 [0.969,0.971] 711
Histological Type  Fixed MTHISAN - Softmax 2 & 0.97 [0.969,0.971] 72.36
Delta MTHISAN - Softmax R 0.97 [0.969,0.971] 7226 (%)
Entropy MTHiSAN - Softmax R 0.97 [0.969,0.971] 72.71
Bayes-Beta MTHiSAN - Softmax o 0.97 [0.969,0.971] 72.47
Fixed MTHISAN - Sigmoid Bl 0.971[0.97,0.972] 85.86
Delta MTHISAN - Sigmoid 2 ol 0.97 [0.969,0.971] 80.87
Entropy MTHISAN - Sigmoid 2 &l 0.97 [0.969,0.971] 84.58
Bayes-Beta MTHISAN - Sigmoid — 0.97 [0.969,0.972] 85.53
Fixed MTCNN - Softmax 2 2 0.97 [0.969,0.971] 78.24
Delta MTCNN - Softmax ol 0.97 [0.969,0.971] 77.97
Entropy MTCNN - Softmax 2 &l 0.97 [0.969,0.971] 79.2
Bayes-Beta MTCNN - Softmax 2 & 0.97 [0.969,0.971] 78.04
Fixed MTCNN - Sigmoid +— 0.97 [0.969,0.972] 85.58
Delta MTCNN - Sigmoid 2 & 0.97 [0.969,0.971] 83.45
Entropy MTCNN - Sigmoid < 0.97 [0.969,0.971] 86.62 (x)
Bayes-Beta MTCNN - Sigmoid H— 0.97 [0.969,0.972] 85.54
|
0.965 0.97 0.975
Accuracy

Fig. 3.
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Experimental study 1:validation data. The accuracy level of about 97% is achieved with the
displayed rejection rate. (*) and (x) represent the lowest and highest rejection rate by task.
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Test Set UTNJKYLASA - Support=371,820
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Experimental study 1: more recent, hold-out test set. The tuning on the validation set
resulted in higher accuracy on the test set than the target level of 97%, corresponding to the
displayed rejection rate. (*) and (x) represent the lowest and highest rejection rate by task.
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Validation Set UTNJKYLASA - Support=398,266

Page 24

Task Method Architecture Accuracy [95% CI]  Rejection (%) CTC Predicted
Laterality Fixed MTHISAN - Softmax + 0.98 [0.98,0.981] 1929 () 7 5
Delta MTHiSAN - Softmax +* 0.98 [0.98,0.981] 19.4 7 5
Entropy MTHISAN - Softmax * 0.98 [0.98,0.98] 19.36 7 5
Bayes-Beta MTHiSAN - Softmax * 0.98 [0.98,0.981] 19.34 7/ 5
DAC MTHISAN - Softmax L4 0.98 [0.979,0.98] 19.74 (x) 7 5
Primary Site Fixed MTHISAN - Softmax * 0.979 [0.979,0.98] 14.42 70 63
Delta MTHiSAN - Softmax * 0.979 [0.979,0.979] 144 () 70 65
Entropy MTHiISAN - Softmax & 0.979 [0.979,0.979] 14.53 70 63
Bayes-Beta MTHISAN - Softmax L 0.979 [0.979,0.98] 14.46 70 63
DAC MTHiSAN - Softmax + 0.979 [0.979,0.98] 16.15 (x) 70 63
Anatomic Subsite  Fixed MTHISAN - Softmax » 0.976 [0.975,0.977] 67.24 () 310 132
Delta MTHiSAN - Softmax L 0.976 [0.975,0.977] 67.31 310 130
Entropy MTHiSAN - Softmax L 0.976 [0.975,0.977] 67.24 310 133
Bayes-Beta MTHISAN - Softmax - 0.976 [0.975,0.977] 67.25 310 132
DAC MTHiSAN - Softmax L 0.976 [0.975,0.977] 6829 (x) 310 115
Histological Type  Fixed MTHISAN - Softmax » 0.974 [0.973,0.975] 75.91 523 223
Delta MTHiSAN - Softmax kS 0.974 [0.973,0.975] 7573 (%) 523 231
Entropy MTHISAN - Softmax L 0.974 [0.973,0.975] 76.28 523 220
Bayes-Beta MTHISAN - Softmax - 0.974 [0.973,0.975] 78.77 523 223
DAC MTHISAN - Softmax E3 0.974 [0.973,0.975] 77.37 (x) 523 126
| I . — —
0.965 0.975 0.985
Accuracy
Test Set UTNJKYLASA - Support=371,820
Task Method Architecture Accuracy [95% CI]  Rejection (%) CTC  Predicted
Laterality Fixed MTHiSAN - Softmax » 0.982[0.981,0.982] 1738 () 7 5
Delta MTHiSAN - Softmax * 0.982 [0.982,0.983] 17.55 7 5
Entropy MTHiSAN - Softmax » 0.982 [0.981,0.982] 17.43 7/ 5
Bayes-Beta MTHISAN - Softmax * 0.982 [0.982,0.982] 17.44 7 5
DAC MTHiISAN - Softmax + 0.982 [0.982,0.983] 18 (x) 7 4
Primary Site Fixed MTHISAN - Softmax » 0.978 [0.977,0.978] 122 () 70 62
Delta MTHiSAN - Softmax 4 0.984[0.984,0.985] 15.2 70 63
Entropy MTHISAN - Softmax 4 0.986 [0.986,0.987) 1716 (x) 70 62
Bayes-Beta MTHISAN - Softmax + 0.98 [0.98,0.981] 13.16 70 62
DAC MTHISAN - Softmax L 4 0.983 [0.982,0.983] 14.48 70 63
Anatomic Subsite  Fixed MTHISAN - Softmax <+ 0.98 [0.98,0.981] 62.68 312 127
Delta MTHiISAN - Softmax + 0.98 [0.98,0.981] 62.78 312 128
Entropy MTHiSAN - Softmax - 0.98 [0.979,0.981] 6263 () 312 132
Bayes-Beta MTHISAN - Softmax + 0.98 [0.98,0.981] 62.69 312 127
DAC MTHiSAN - Softmax @ 0.98[0.979,0.981] 6392 (x) 312 108
Histological Type  Fixed MTHISAN - Softmax » 0.98 [0.979,0.98] 72.5 509 206
Delta MTHiSAN - Softmax » 0.979 [0.978,0.98] 72.39 509 205
Entropy MTHISAN - Softmax » 0.98 [0.979,0.98] 72.82 509 204
Bayes-Beta MTHiSAN - Softmax » 0.979 [0.978,0.98] 72.33 *) 509 205
DAC MTHISAN - Softmax * 0.981 [0.98,0.982] 7419 (x) 509 124
=1 a0 T 1

Fig. 5.

Experimental study 2: validation set (top) and more recent, hold-out test set (bottom). The

0.965 0.975 0.985

Accuracy

tuning on the validation set for the same self-tuning accuracy selected by the DAC resulted

in a higher accuracy than the target level of 97%. (*) and (x) represent the lowest and highest
rejection rate by task. Also, all the proposed a posteriori methods retain a larger or equal rate
of classes (i.e., number of retained predicted classes vs. ground truth CTC classes) compared

to the DAC.
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Test Set CA - Support=131,050
Task Method Architecture Accuracy [95% Cl]  Rejection (%) CTC Predicted
Laterality Fixed MTHISAN - Softmax » 0.975 [0.974,0.976] 21.09 7 5
Delta MTHISAN - Softmax - 0.975 [0.974,0.976] 21.08 () 7 5
Entropy MTHISAN - Softmax k3 0.975 [0.974,0.976) 21.42 7 5
Bayes-Beta MTHISAN - Softmax L 0.975 [0.974,0.976] 21.15 7 5
DAC MTHiSAN - Softmax L 0.976 [0.975,0.977] 2218 (x) 7 3
Primary Site Fixed MTHISAN - Softmax - 0.978 [0.977,0.979] 1375 () 69 61
Delta MTHISAN - Softmax # 0.984[0.983,0.985] 16.11 69 61
Entropy MTHISAN - Softmax #® 0.986 [0.985,0.986] 1867 (x) 69 61
Bayes-Beta MTHiSAN - Softmax L 0.98 [0.98,0.981] 14.77 69 61
DAC MTHiSAN - Softmax 4 0.983(0.983,0.984] 16.33 69 61
Anatomic Subsite  Fixed MTHISAN - Softmax » 0.979 [0.978,0.98] 60.72 (*) 296 100
Delta MTHISAN - Softmax » 0.979 [0.978,0.98] 60.74 296 102
Entropy MTHISAN - Softmax L 0.979 [0.978,0.98] 60.77 296 98
Bayes-Beta MTHiSAN - Softmax » 0.979 [0.978,0.98] 60.74 296 100
DAC MTHiSAN - Softmax L 0.981 [0.98,0.982] 6199 (x) 296 85
Histological Type  Fixed MTHISAN - Softmax » 0.972[0.971,0.974] 75.74 500 128
Delta MTHiSAN - Softmax ad 0.972[0.97,0.973] 75.67 500 134
Entropy MTHiSAN - Softmax gl 0.973 [0.971,0.975] 76.01 500 128
Bayes-Beta MTHiSAN - Softmax [ 0.972[0.97,0.974) 756 () 500 128
DAC MTHISAN - Softmax nal 0.974 [0.972,0.976] 7772 (x) 500 78
T T 1
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Test Set NM - Support=158,056
Task Method Architecture Accuracy [95% CI]  Rejection (%) CTC Predicted
Laterality Fixed MTHiSAN - Softmax » 0.979 [0.978,0.98] 21 (7 5
Delta MTHISAN - Softmax " 0.979 [0.978,0.98] 21.05 7 5
Entropy MTHISAN - Softmax » 0.979 [0.978,0.98] 211 7 5
Bayes-Beta MTHiSAN - Softmax » 0.979 [0.978,0.98] 21.06 7 5
DAC MTHISAN - Softmax L 4 0.98 [0.979,0.98] 2148 (x) 7 4
Primary Site Fixed MTHISAN - Softmax L 4 0.97 [0.969,0.971] 1558 () 70 61
Delta MTHiSAN - Softmax » 0.978 [0.977,0.978] 18.71 70 61
Entropy MTHISAN - Softmax 4 0.981[0.981,0.982] 227 (x) 70 61
Bayes-Beta MTHISAN - Softmax - 0.973[0.972,0.974] 16.77 70 61
DAC MTHISAN - Softmax * 0.979 [0.978,0.979] 19.85 70 60
Anatomic Subsite  Fixed MTHiSAN - Softmax L d 0.975 [0.973,0.976] 65.76 296 106
Delta MTHISAN - Softmax » 0.975 [0.974,0.976] 65.69 () 296 105
Entropy MTHiSAN - Softmax * 0.974 [0.973,0.976] 66.08 296 106
Bayes-Beta MTHISAN - Softmax o 0.975 [0.973,0.976] 65.77 206 106
DAC MTHISAN - Softmax g 0.974 [0.972,0.975] 67.34 (x) 296 87
Histological Type  Fixed MTHISAN - Softmax 0.966 [0.964,0.968] 80.47 467 142
Delta MTHISAN - Softmax 4 0.965 [0.963,0.967] 79.94 (") 467 141
Entropy MTHiSAN - Softmax 4 0.967 [0.965,0.969] 81.34 467 141
Bayes-Beta MTHISAN - Softmax M 0.966 [0.964,0.968] 80.32 467 142
DAC MTHISAN - Softmax hd 0.976 [0.974,0.977] 8425 (x) 467 84
T T

Fig. 6.

Experimental study 2. O0D test set — CA (top) and NM (bottom). The tuning on the

0.965 0.975 0.985
Accuracy

validation set led to a higher accuracy on the test set than the target level of 97%. (*) and
(x) represent the lowest and highest rejection rate by task. Also, all the proposed a posteriori

methods retain a larger or equal rate of classes (i.e., number of retained predicted classes vs.

ground truth CTC classes) compared to the DAC.
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Number of electronic pathology reports considered in the study split by training, validation, and test data.
Specifically, the models are trained using data from five registries (LA+KY+UT+NJ+SA) and evaluated on
most recent (all reports after 2017) holdout data from these same five registries as well as two OOD registries

(CA and NM).
Registry Training samples  Validation samples  Test samples
LAKYUTNJSA 1,864,099 398,266 371,820
LA 363,367 77,623 76,305
KY 361,981 76,920 80,588
uT 140,026 30,298 28,436
NJ 369,441 78,874 74,742
SA 629,284 134,551 111,749
CA n/a n/a 131,050
NM n/a n/a 158,056
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